# MOLECULAR MARKERS ASSOCIATED WITH HIGH VITAMIN-C CONTENT IN GUAVA

Youssef M.<sup>1\*</sup> and R.A. Ibrahim<sup>2</sup>

1-Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt 2-Department of Pomology, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt

\* Corresponding author: mkhirshy@aun.edu.eg

## ABSTRACT



Vitamin-C content (VCC) was evaluated in 74 guava landraces using direct titration method with iodine during two seasons. Results showed that the highest value of VCC was 284.0±1.33, while the lowest VCC was 152.83±1.83 with an average of 221.26±3.17 mg/100g fresh weight. Analysis of variance showed the presence of highly significant differences among the tested landraces, as well as the interaction between landraces and seasons. Data of VCC showed normal distribution with high values of both broad sense heritability (0.97) and genetic advance (78.49) indicating high ability for selection. On the other hand, molecular analysis was performed using two molecular markers, i.e. sequence related amplified polymorphism (SRAP) and inter sequence simple repeats (ISSR) to determine unique and specific bands for high or low VCC. SRAP was more informative than ISSR and was able to generate 12 specific bands. Among these bands, 10 bands were specific for bulked DNA of landraces with high VCC, while the other two bands were specific for low VCC. However, ISSR only showed four bands where all of them were specific for low VCC. Results of this study gave good information for genotype selection for high VCC which could be used in guava breeding programs and/or biotechnological approaches. In addition, the specific bands generated by SRAP might assist in rapid screening for genotypes with high VCC, which could be identified in seedling or graft stage, therefore this would save time in a plant with long juvenile period like guava. Furthermore, these bands would be analyzed by sequencing in subsequent studies to locate related genome regions.

Keywords: Psidium guajava, Vitamin C content, SRAP, ISSR, Specific marker

## **INTRODUCTION**

Guava (*Psidium guajava* L) is the most important species in the family Myrtaceae, and is widely cultivated in many tropical and subtropical countries worldwide. Its fruit is rich in several important nutrients such as vitamins, calcium, phosphorus, iron as well as many antioxidants. Guava is a rich source of ascorbic acid (Vitamin C), which can reach three to six folds more than that of orange (Kwee and Chong 1990). However, vitamin C level in guava may vary depending on genotypic differences, pre-harvest climatic conditions, maturity, postharvest handling procedures (Chitravathi *et al.* 2014) and method of quantification (Raghu *et al.*, 2007).

Vitamin C must be obtained through the diet since human's body has no ability to synthesize it due to a mutation in the gene coding for L-gluconolactone oxidase (Ensminger *et al.*, 1994). Ascorbic acid involves in synthesis of lipids and protein, and metabolism of tyrosine, carbohydrate and iron, as well as its role in resistance to infections and cellular respiration (McEvoy 2000). In addition, vitamin C shows antioxidative effects which can protect against oxidativlely induced DNA damage (Sweetman *et al.*, 1997) and reduce the risk of chronic diseases such as cancer, cardiovascular disease, and cataracts (Carr and Frei 1999).

Characterization of guava genotypes by their vitamin C content can assist in selection of the proper plant for breeding and improvement programs. Furthermore, the association of phenotypic evaluation with molecular analysis considered as a very important task which provides an excellent tool for rapid screening, especially when specific markers are associated with the trait of interest. Several molecular markers can be used for this task however some markers showed their success over others. For instance, the sequence related amplified polymorphism (SRAP) that targets the open reading frames (ORFs) (Li and Quiros 2001) showed its efficiency with guava in several approaches including germplasm identification (Xiangyan et al., 2011), genetic diversity (Youssef et al., 2015a) and marker-based genetic map (Padmakar et al., 2015). Similarly, inter simple sequence repeats (ISSR) have been proved as an effective tool for genetic fidelity assessment in guava plants derived by clonal propagation (Liu and Yang, 2012) and somatic embryogenesis (Rai et al., 2012; Kamlea et al., 2014) as well as in molecular characterization of guava landraces (Kidaha et al., 2014).

Vitamin-C and other phenotypic traits in guava were evaluated in a study by Youssef *et al.* (2015a) who found significant variations in VCC among some guava landraces. For more focusing on this trait, the number of landraces was increased in the present study by collection from different locations, and the content of Vitamin-C was evaluated during two seasons followed by molecular analysis using SRAP and ISSR. Therefore, the main objective in this study was to determine specific markers associated with high or low content of Vitamin-C in guava using molecular markers.

## MATERIALS AND METHODS

#### **Plant materials**

Seventy four guava landraces were used in this study to determine Vitamin-C content during the seasons 2012 and 2013 and to detect molecular markers associated with high Vitamin-C content. These landraces were collected from different locations in Egypt. Landraces grown in experimental farm of Genetics Department, Faculty of Agriculture, Assiut University were collected in a previous study by Youssef *et al.* (2010), while the other were collected form experimental farm of Pomology Department and from local farms in Sahel Seleem.

## Quantification of vitamin C content

Vitamin-C as the total ascorbic acid in the fresh fruit was determined using the direct titration method with iodine according to Suntornsuk *et al.* (2002). The experimental design was performed as randomized complete block with three replicates combined over seasons.

#### Statistical data analysis

Analysis of variance (ANOVA) was done using MSTAT-C statistical program (Nissen, 1984). Means were separated by least significant difference (LSD) test at 5% and 1% levels of probability. The heritability in broad sense was calculated according to Singh and Choudhury (1985). Genetic advance was also calculated for the studied traits by 5% selection intensity (Allard, 1964) and the genetic gain (GG) was calculated from the genetic advance as a percent of mean. Normal distribution of the averaged Vitamin-C content data was performed using SPSS-14 software.

## Molecular analysis

### DNA extraction and quantification

Total genomic DNA was extracted from five landraces of both highest and lowest vitamin C content,

following the protocol of Youssef *et al.*, (2015b). DNA quality and concentration were determined using a spectrophotometer and Khirshyat 1.0 tools (Youssef 2012). DNA samples of each category were bulked to be used in molecular analysis.

## SRAP and ISSR assays

SRAP was performed as described by Li and Quiros (2001) and ISSR was achieved according to Rai *et al.* (2012) and executed using Khirshyat 1.0 program (Youssef 2012). Ten SRAP primers and ten ISSR primers were selected and used for the analysis (Table 1). PCR products of SRAP and ISSR were separated on 2.5 and 1.5% agarose gel, respectively and visualized by staining with ethidium bromide.

### Molecular data analysis

SRAP and ISSR profiles were converted to binary data matrices by detecting the presence (1) or the absence (0) of the strong, reproducible and clearly distinguished bands. The number of unique and specific bands for high and/or low Vitamin-C content was registered. The percentage of polymorphism was calculated for each primer by dividing the total number of polymorphic bands by the total number of bands.

| Table | Table 1. SRAP and ISSR primer sequences used for molecular analysis. |                                         |    |         |                           |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------|-----------------------------------------|----|---------|---------------------------|--|--|--|--|--|--|
|       |                                                                      | SRAP                                    |    | ISSR    |                           |  |  |  |  |  |  |
| No    | Code                                                                 | Sequence $(5^{-3})$                     | No | Codes   | Sequence (5`-3`)          |  |  |  |  |  |  |
| 1     | Me-01<br>Em-04                                                       | TGAGTCCAAACCGGATA<br>GACTGCGTACGAATTTGA | 1  | UBC-807 | A GA GA GA GA GA GA GA GT |  |  |  |  |  |  |
| 2     | Me-02<br>Em-02                                                       | TGAGTCCAAACCGGAGC<br>GACTGCGTACGAATTTGC | 2  | UBC-808 | A GA GA GA GA GA GA GA GC |  |  |  |  |  |  |
| 3     | Me-03<br>Em-03                                                       | TGAGTCCAAACCGGAAT<br>GACTGCGTACGAATTGAC | 3  | UBC-810 | GAGAGAGAGAGAGAGAGAT       |  |  |  |  |  |  |
| 4     | Me-04<br>Em-01                                                       | TGAGTCCAAACCGGACC<br>GACTGCGTACGAATTAAT | 4  | UBC-811 | GAGAGAGAGAGAGAGAGAC       |  |  |  |  |  |  |
| 5     | Me-04<br>Em-02                                                       | TGAGTCCAAACCGGACC<br>GACTGCGTACGAATTTGC | 5  | UBC-812 | GAGAGAGAGAGAGAGAGAA       |  |  |  |  |  |  |
| 6     | Me-04<br>Em-03                                                       | TGAGTCCAAACCGGACC<br>GACTGCGTACGAATTGAC | 6  | UBC-815 | CTCTCTCTCTCTCTCTG         |  |  |  |  |  |  |
| 7     | Me-04<br>Em-04                                                       | TGAGTCCAAACCGGACC<br>GACTGCGTACGAATTTGA | 7  | UBC-826 | ACACACACACACACACC         |  |  |  |  |  |  |
| 8     | Me-04<br>Em-10                                                       | TGAGTCCAAACCGGACC<br>GACTGCGTACGAATTTAG | 8  | UBC-834 | GAGAGAGAGAGAGAGAGAGAGAGAT |  |  |  |  |  |  |
| 9     | Me-06<br>Em-03                                                       | TGAGTCCAAACCGGTAG<br>GACTGCGTACGAATTGAC | 9  | UBC-840 | GAGAGAGAGAGAGAGAGATT      |  |  |  |  |  |  |
| 10    | Me-06<br>Em-10                                                       | TGAGTCCAAACCGGTAG<br>GACTGCGTACGAATTTAG | 10 | UBC-846 | CACACACACACACACAAT        |  |  |  |  |  |  |

## **RESULTS AND DISCUSSION**

Genetic variability of Vitamin-C content (VCC) was evaluated among 74 guava landraces using molecular markers. Direct titration method showed large scale of variability in VCC among the tested landraces. Regarding, the averaged value of VCC over the two seasons was 221.26±3.17 mg/100g. The highest value of VCC was 284.0±1.33 mg/100g showed by landrace L10, while the lowest was 152.83±1.83 mg/100g showed by landrace L4 as an average of the

two seasons (Table 2). Analysis of variance showed highly significant (p<0.01) differences among the tested landraces in Vitamin-C content as well as the interaction between landraces and seasons (Table 3). The content of ascorbic acid was found to be higher than other fruit crops commonly consumed in diet, such as mango (60.5 mg/100 g), kiwi fruits (29–80 mg/100g), papaya (92.9 mg/100 g), (Nishiyama *et al.*, 2004), or cherry (31–112 mg/100g) (Yilmaz *et al.*, 2009). The level of ascorbic acid can vary with genotypic differences, pre-harvest climatic conditions, maturity, postharvest handling

procedures (Chitravathi *et al.* 2014) and method of quantification (Raghu *et al.*, 2007). In this regard, the amount of ascorbic acid in the white and pink guava types was investigated by El-Faki and Saeed (1975) and Bashir and Abu-Goukh (2003), who found higher values in the white guava than pink types, while other investigators reported the reverse (Agnihortri *et al.*,

1962; El-Zorkani, 1968). In the present study, only two guava accessions with pink pulp (L3 and L71) were used and showed higher VCC similar to those of white pulp. In addition, Bashir and Abu-Goukh (2003) found that the peel exhibited much higher values of ascorbic acid than the pulp in both white and pink types.

| Table | 2. Averages | of vitamin | C content | (mg/100g fres | h weight) of the | ie tested guava | landraces |
|-------|-------------|------------|-----------|---------------|------------------|-----------------|-----------|
|-------|-------------|------------|-----------|---------------|------------------|-----------------|-----------|

| Landrace | Mean ± SE         | Observations | Landrace     | Mean ± SE          | Observations  |
|----------|-------------------|--------------|--------------|--------------------|---------------|
| L1       | $232.00 \pm 0.67$ | А            | L38          | $249.83 \pm 1.83$  | А             |
| L2       | $215.00 \pm 1.33$ | А            | L39          | $234.33 \pm 1.00$  | А             |
| L3       | $254.83 \pm 0.50$ | A, Pink      | L40          | $244.50 \pm 20.17$ | А             |
| L4       | $152.83 \pm 1.83$ | A, Low       | L41          | $222.17 \pm 8.17$  | А             |
| L5       | $174.17 \pm 0.83$ | A, Low       | L42          | $208.50 \pm 16.17$ | А             |
| L6       | $216.83 \pm 0.83$ | А            | L43          | $213.50 \pm 0.50$  | А             |
| L7       | $207.83 \pm 0.83$ | А            | L44          | $191.67 \pm 1.67$  | А             |
| L8       | $223.83 \pm 0.50$ | А            | L45          | $222.33 \pm 10.00$ | А             |
| L9       | $226.83 \pm 1.17$ | А            | L46          | $209.50 \pm 16.17$ | А             |
| L10      | $284.00 \pm 1.33$ | A, High      | L47          | $227.67 \pm 1.00$  | А             |
| L11      | $234.50 \pm 0.17$ | А            | L48          | $232.50 \pm 7.83$  | А             |
| L12      | $201.83 \pm 0.50$ | А            | L49          | $210.50 \pm 14.17$ | В             |
| L13      | $202.50 \pm 0.83$ | А            | L50          | $231.83 \pm 0.17$  | В             |
| L14      | $234.00 \pm 0.67$ | А            | L51          | $200.67 \pm 3.00$  | В             |
| L15      | $185.50 \pm 1.83$ | А            | L52          | $251.00 \pm 0.67$  | В             |
| L16      | $255.83 \pm 1.83$ | А            | L53          | $258.33 \pm 1.33$  | В             |
| L17      | $204.83 \pm 0.83$ | А            | L54          | $268.33 \pm 0.33$  | B, High       |
| L18      | $215.33 \pm 0.00$ | А            | L55          | $226.50 \pm 1.50$  | В             |
| L19      | $283.83 \pm 0.50$ | A, High      | L56          | $242.33 \pm 0.00$  | В             |
| L20      | $251.83 \pm 0.50$ | А            | L57          | $186.50 \pm 2.50$  | В             |
| L21      | $183.00 \pm 1.33$ | А            | L58          | $233.00 \pm 2.00$  | В             |
| L22      | $177.17 \pm 1.83$ | А            | L59          | $228.33 \pm 1.33$  | В             |
| L23      | $194.50 \pm 1.17$ | А            | L60          | $189.83 \pm 0.17$  | В             |
| L24      | 212.00± 1.33      | А            | L61          | $240.33 \pm 0.00$  | В             |
| L25      | $231.17 \pm 1.17$ | А            | L62          | $203.50 \pm 1.83$  | В             |
| L26      | $244.17 \pm 1.50$ | А            | L63          | $256.17 \pm 0.17$  | В             |
| L27      | $200.00 \pm 1.67$ | А            | L64          | $215.17 \pm 0.17$  | В             |
| L28      | $208.83 \pm 1.17$ | А            | L65          | $177.00 \pm 2.00$  | B, Low        |
| L29      | $187.50 \pm 0.83$ | А            | L66          | $231.00 \pm 0.67$  | В             |
| L30      | $212.00 \pm 1.00$ | А            | L67          | $242.50 \pm 0.17$  | В             |
| L31      | $224.33 \pm 1.00$ | А            | L68          | $231.00 \pm 0.00$  | В             |
| L32      | $276.17 \pm 0.50$ | A, High      | L69          | $243.50 \pm 2.17$  | С             |
| L33      | $236.17 \pm 0.17$ | А            | L70          | $220.50 \pm 1.17$  | С             |
| L34      | $175.50 \pm 0.83$ | A, Low       | L71          | $258.50 \pm 0.17$  | C, High, Pink |
| L35      | $210.17 \pm 2.50$ | А            | L72          | $186.00 \pm 1.33$  | С             |
| L36      | $242.00 \pm 0.33$ | А            | L73          | $204.33 \pm 3.00$  | С             |
| L37      | $173.00 \pm 0.67$ | A, Low       | L74          | $234.00 \pm 1.67$  | С             |
| $H^2$    | 0.97              |              | $LSD_{0.05}$ | 7.02               |               |
| GA       | 78.49             |              | $LSD_{0.01}$ | 9.26               |               |
| GG       | 35.51             |              | CV           | 2.80               |               |

A: landraces collected from Genetics Dept.farm, B: landraces collected from Pomology Dept. farm, C: landraces collected from Sahel Seleem farms, Pink: fruit with pink pulp, High: selected landraces for high vitamin C content, Low: selected landraces for low vitamin C content, H<sup>2</sup>: heritability in broad sense, GA: genetic advance, GG: genetic gain, CV: coefficient of variation.

The results in this study showed that the VCC in guava was higher than some reports (Suntornsuk *et al.*, 2002; Raghu *et al.*, 2007) and comparable to other (Jawaheer *et al.*, 2003) which indicate the effect of genotype. The stage of maturity as well was reported as a factor affecting the amount of vitamin C. The earlier study of Golberg and Levy (1941) reported that the VCC was 250-350 mg/100g for green and hard fruits, 300-450 mg/100g for ripe and firm fruits, while it was 50-100 mg/100g for over ripe and soft fruits. Furthermore, the mature green stage exposes the maximum level of ascorbic acid content in guava (Agnihortri *et al.*, 1962; El-Zorkani, 1968) due to the breakdown of starch to glucose which is used in the biosynthesis of ascorbic acid (Yan *et al.*, 2006) and then it starts to decline rapidly as the fruit ripens. On the

#### Youssef M. and R.A. Ibrahim

other hand, Raghu *et al.*, (2007) reported that the quantification method affected the Vitamin C content in guava. The same authors found that the spectrophotometric methods using 2,4-dinitrophenylhydrazine or indophenol-xylene provided an over-estimation of vitamin C content in guava fruits

The distribution of the 74 guava landraces for VCC is shown in Figure 1. The trait showed continuous variation and approached normality, indicating that it is under the control of polygenes. The broad sense heritability ( $H^2$ ) was estimated for VCC which was significantly high (0.97). Moreover,  $H^2$  was associated with high genetic advance (78.49) and genetic gain (35.51). High heritability may lead to increase genetic advance, when sufficient genetic variability existed in

the germplasm (Sardana *et al.* 2007). The Vitamin C content would be controlled by additive gene action since it showed a highly heritability associated with a high genetic advance (Eid 2009).

 Table 3. The combined analysis of variance of the tested guava landraces for vitamin C content output the two seesans

| content over the two seasons. |     |                     |  |  |  |  |  |
|-------------------------------|-----|---------------------|--|--|--|--|--|
| Source of variance            | Df  | Means of Squares    |  |  |  |  |  |
| Season (S)                    | 1   | 42.89 <sup>NS</sup> |  |  |  |  |  |
| Error                         | 4   | 178.80              |  |  |  |  |  |
| Landrace (L)                  | 73  | 4505.15**           |  |  |  |  |  |
| $S \times L$                  | 73  | 147.38**            |  |  |  |  |  |
| Error                         | 292 | 38.25               |  |  |  |  |  |

NS: none significant, \*\*: significant at 0.01 probability level.



Figure 1. Distribution of Vitamin-C content in the tested 74 guava landraces.

### Molecular analysis

The Sequence related amplified polymorphism (SRAP) vis-á-vis inter simple sequence repeats (ISSR) were used in this study for molecular analysis of guava landraces with high and low content of Vitamin-C. Five DNA samples of landraces exposing high or low content of vitamin C were used as a bulk for molecular analysis. Gathering the DNA samples of landraces with high or low content of Vitamin-C reduced the variations within each group and mainly focused on the difference between the high and low bulks of the trait of interest. Results showed that the ten primers of each SRAP and ISSR reproduced a total of 139 and 70 bands, respectively. The average of amplified number of bands per primer was 13.9 and 7 for SRAP and ISSR respectively. The averaged percentage of polymorphism (%P) between high and low bulks was 8.63 and 5.71% showed by SRAP and ISSR respectively. Figure 2 shows profiles of some primers of SRAP and ISSR.

SRAP showed its effectiveness by generating several specific bands for the high and low VCC bulked-landraces. Among the tested 10 primers of SRAP, six primers were able to generate unique and specific bands for high and/or low VCC. Regarding, a total of 10 bands were generated as specific for high VCC generated by five primers, i.e. three bands by Me2-Em2, four bands by Me3-Em3, one band by Me4-Em4 and one band by Me4-Em1. While, only two bands were generated as specific for low VCC generated by two primers, i.e. one band by both Me1-Em4 and Me3-Em3 as presented in Table 4. On the other hand, ISSR primers used in this study were less informative than SRAP in generating specific bands for the investigated trait. In this regard, ISSR generated four bands which were specific for low VCC generated by three primers, i.e. two bands by UBC-826, one band by UBC-834 and one band by UBC-846. However, no specific bands were generated by ISSR for high VCC. The generated bands could preliminarily serve as selectable markers for Vitamin-C content in guava; however purification, sequencing and analysis of these bands might be necessary in the proximate research work. The presence or absence of specific bands generated by SRAP and ISSR are shown in Table 5.

| (a)        |     | Me1-Em4           | Me2- | -Em2 | Me4-  | Em3 | (b)  |         | UBC   | C-826 | UBC  | -834           | UBC  | -846   |
|------------|-----|-------------------|------|------|-------|-----|------|---------|-------|-------|------|----------------|------|--------|
| bp         | М   | High Low          | High | Low  | High  | Low | bp   | Μ       | High  | Low   | High | Low            | High | Low    |
| -          | -   |                   |      |      |       |     | 1650 | -       |       |       |      |                |      |        |
| 800<br>700 |     |                   |      |      | -     | -   |      |         |       |       |      |                |      |        |
| 600        | No. |                   |      | ·    | . 101 | 10  | 1000 |         |       | -     |      |                |      |        |
| 500        |     | E1 E3             |      | 1    | -     | -   | 850  |         |       |       | -    | and the second |      |        |
| 400        |     | -                 | 123  | -    | -     |     | 650  |         | -     |       |      | - Million      |      |        |
| 300        |     |                   |      |      | -     | -   | 500  | -       | (Test | 1     | **   | ***            | ***  | -      |
|            |     | Territoria Carina |      |      | •     |     | 400  | entitie |       |       | -    | -              |      | - roga |
| 200        |     | And the second    |      |      |       |     | 300  |         |       |       | -    | -              | -    | 6.4    |
|            |     |                   |      |      |       |     | 200  |         |       |       |      |                | -    |        |
|            |     |                   |      |      |       |     |      |         |       |       |      |                |      |        |

Figure 2. Profiles of some primers of (a) SRAP and (b) ISSR showing the difference between two bulked DNA of landraces with high and low Vitamin-C content. Arrows indicate specific bands.

Table 4. Level of polymorphism and number of specific bands for landraces with high and low vitamin C content generated by SRAP and ISSR primers.

| D           | TND           | 0/ D  | Specific bands |     | Derterner | TND | 0/ D  | Specific bands |     |
|-------------|---------------|-------|----------------|-----|-----------|-----|-------|----------------|-----|
| Primer      | IND           | % P   | High           | Low | Primer    | IND | %0 P  | High           | Low |
| Me1-Em4     | 13            | 7.69  | 0              | 1   | UBC-807   | 6   | 0.00  | 0              | 0   |
| Me2-Em2     | 13            | 23.08 | 3              | 0   | UBC-808   | 5   | 0.00  | 0              | 0   |
| Me3-Em3     | 21            | 23.81 | 4              | 1   | UBC-810   | 9   | 0.00  | 0              | 0   |
| Me4-Em1     | 15            | 6.67  | 1              | 0   | UBC-811   | 10  | 0.00  | 0              | 0   |
| Me4-Em2     | 9             | 0.00  | 0              | 0   | UBC-812   | 8   | 0.00  | 0              | 0   |
| Me4-Em3     | 14            | 7.14  | 1              | 0   | UBC-815   | 11  | 0.00  | 0              | 0   |
| Me4-Em4     | 8             | 12.50 | 1              | 0   | UBC-826   | 9   | 22.22 | 0              | 2   |
| Me4-Em10    | 21            | 0.00  | 0              | 0   | UBC-834   | 5   | 20.00 | 0              | 1   |
| Me6-Em3     | 16            | 0.00  | 0              | 0   | UBC-840   | 2   | 0.00  | 0              | 0   |
| Me6-Em10    | 9             | 0.00  | 0              | 0   | UBC-846   | 5   | 20.00 | 0              | 1   |
| Total       | 139           | 8.63  | 10             | 2   | Total     | 70  | 5.71  | 0              | 4   |
| TND . Astal | how of how do | 0/ D  | mto as af ma   | l   |           |     |       |                |     |

TNB: total number of bands, %P: percentage of polymorphism.

Table 5. Survey of specific bands generated by SRAP and ISSR showing their size (bp) and presence or absence in high or low vitamin C content.

| Marker | No. | Primer  | Size (bp) | High | Low |
|--------|-----|---------|-----------|------|-----|
|        | 1   | Me1-Em4 | 340       | -    | +   |
|        | 2   | Me2-Em2 | 960       | +    | -   |
|        | 3   | Me2-Em2 | 795       | +    | -   |
|        | 4   | Me2-Em2 | 675       | +    | -   |
|        | 5   | Me3-Em3 | 620       | +    | -   |
| AP     | 6   | Me3-Em3 | 510       | +    | -   |
| SR     | 7   | Me3-Em3 | 350       | +    | -   |
|        | 8   | Me3-Em3 | 200       | +    | -   |
|        | 9   | Me3-Em3 | 225       | -    | +   |
|        | 10  | Me4-Em3 | 255       | +    | -   |
|        | 11  | Me4-Em4 | 560       | +    | -   |
|        | 12  | Me4-Em1 | 350       | +    | -   |
|        | 1   | UBC-826 | 1005      | -    | +   |
| SR     | 2   | UBC-826 | 735       | -    | +   |
| IS     | 3   | UBC-834 | 660       | -    | +   |
|        | 4   | UBC-846 | 410       | -    | +   |

+,-: indicate presence or absence of specific bands in high and low Vitamin-C bulks

Both molecular markers used in this study have been reported as excellent tools for genome screening and plant diversity. For instance, the advantages of SRAP are reported to be simple, informative, reliable and easy to develop (Li and Quiros, 2001). On the other hand, ISSR proved to be effective and reproducible for detecting genetic fidelity and variability (Martins et al., 2004; Kumar et al., 2009). SRAP was used with guava for the first time by Xiangyan et al. (2011) and it was reported as an effective tool in the germplasm identification and genetic diversity analysis in guava. Later, SRAP showed a high level of polymorphism in the assessment of genetic diversity in guava (Youssef et al., 2015b). Recently, SRAP was used along with SSR for developing marker-based genetic map of guava, in which 20% of parental polymorphism was exhibited by SRAP (Padmakar et al., 2015). On the other hand, ISSR has been proved as an effective tool for genetic fidelity assessment in guava plants derived by clonal propagation (Liu and Yang, 2012) and somatic embryogenesis (Rai et al., 2012 and Kamlea et al., 2014). Additionally, ISSR exposed a range of 51 to 85% polymorphism in molecular characterization of guava landraces in Kenya (Kidaha et al., 2014). Comparing SRAP and ISSR data generated in the present study, SRAP was obviously more informative in generating specific bands for high and low content of vitamin C. These variations between the two molecular markers might be due to their different basis in analyzing genome regions.

In conclusion, the characterization of large number of guava landraces performed in this study provided good information for proper genotype selection with high vitamin C content which could be used in breeding programs and biotechnological approaches. In addition, molecular analysis of landraces with high and low vitamin C content was able to generate several specific bands for each category. These bands could assist in rapid screening of guava seedlings or scions with no need for mature plant evaluation. However, sequencing and analysis of these bands would be done in subsequent studies for more focus on genome related regions.

### REFERENCES

- Agnihortri, B.N.; K.L. Kapur and K.R. Goel (1962). Ascorbic acid content of fruit during growth and maturity. Science and Culture, 28, 435–438.
- Allard, R. (1964). Principles of plant breeding. John Wiley and Sons Inc New York, London.
- Bashir, H.A. and A.A. Abu-Goukh (2003) Compositional changes during guava fruit ripening. Food Chemistry 80:557–563.
- Carr, C.A. and B. Frei (1999). Towards a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 69: 1086–1107.
- Chitravathi, K.; O.P. Chauhan and P.S. Raju (2014). Postharvest shelf-life extension of green chillies (*Capsicum annuum* L.) using shellac-based edible surface coatings. Postharvest Biol Technol 92:146–148.
- Eid, M.H. (2009). Estimation of heritability and genetic advance of yield traits in wheat (*Triticum* aestivum L.) under drought condition. Int. J. Genet Mol. Biol. 1: 115-120.

- El-Faki, H. A., and A.R. Saeed (1975). Physio-chemical studies on guava and their suitability for processing. Sudan Journal of Food Science and Technology, 7, 9–17.
- El-Zorkani, A.S. (1968). A preliminary report on vitamin C, sugars, pectin and acid contents of guava. Agricultural Research Review, 46, 107–111.
- Ensminger, A.H.; M.E. Ensminger; J.E. Konlande and J.R.K. Robson (1994). Vitamin C. In: Food and Nutrition Encyclopedia. Vol 2., 2nd edn. London: CRC Press, pp 2247–2255.
- Golberg, L. and L. Levy (1941). Vitamin C content of fresh, canned and dried guavas. Nature, 184:286.
- Jawaheer, B.; D. Goburdhun and A. Ruggoo (2003). Effect of processing and storage of guava into jam and juice on the ascorbic acid content. Plant Foods for Human Nutrition 58:1–12.
- Kamlea, M.; P. Kumarb; A. Bajpaia; S. Kalimc; R. Chandraa (2014). Assessment of genetic fidelity of somatic embryogenesis regenerated guava (*Psidium guajava* L.) plants using DNA-based markers. New Zeal J Crop Hort Sci 42 (1):1-9.
- Kidaha, L.M.; A.E. Alakonya and A.B. Nyende (2014). Molecular characterization of guava landraces in Kenya (Western and South coast). J Bio Agric Heal 4 (15):81-86.
- Kumar, M.; G.P. Mishra; R. Singh; J. Kumar; P.K. Naik and S.B. Singh (2009). Correspondence of ISSR and RAPD markers for comparative analysis of genetic diversity among different apricot genotypes from cold arid deserts of trans-Himalayas. Physiol Mol Biol Plants 15:225-236.
- Kwee, L.T. and K.K. Chong (1990). Guava in Malaysia. Production, pests and diseases. Tropical Press, pp 9–37.
- Li, G. and C.F. Quiros (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461.
- Liu, X. and G. Yang (2012). Assessment of clonal fidelity of micro-propagated guava (*Psidium guajava*) plants by ISSR markers. Aust J Crop Sci 6(2):291-295.
- Martins, M.; D. Sarmento and M.M. Oliveira (2004). Genetic stability of micropropagated almond plantlets as assessed by RAPD and ISSR markers. Plant Cell Rep 23: 492–496.
- McEvoy, G.K. (2000). American Hospital Formulary Service - Drug Information 2000, American Society of Health-System Pharmacists, Inc, Bethesda, MD, 2000, pp. 3328–3330.
- Nishiyama, I.; Y. Yamashita; M. Yamanaka; A. Shimohashi; T. Fukuda and T. Oota (2004). Varietal difference in vitamin C content in the fruit of kiwifruit and other *Actinidia* species. Journal of Agricultural and Food Chemistry, 52, 5472–5475.

#### J.Agric.Chem.and Biotechn., Mansoura Univ.Vol. 7(3): March, 2016

- Nissen, O. (1984). MSTAT. A microcomputer program for statistical analyses of experiments and surveys. In: H Riley, Skjelvag AO (eds) The impact of climate on grass production and quality. Proc General Meet Eur Grassl Fed, 10<sup>th</sup>, As, Norway. 26–30 June 1984. Norwegian State Agric. Res. Stations, As, pp.555–559.
- Padmakar, B.; C. Kanupriya; V.M. Lathaa; K.S. Prashant; M.R. Dinesh; D. Sailaja and C. Aswath (2015). Development of SRAP and SSR markerbased genetic linkage maps of guava (*Psidium* guajava L.). Sci Hort 192: 158–165.
- Raghu, V.; K. Platel and K. Srinivasan (2007). Comparison of ascorbic acid content of *Emblica* officinalis fruits determined by different analytical methods. Journal of Food Composition and Analysis 20:529–533.
- Rai, K.M.; M. Phulwaria; K.M. Gupta; N.S. Shekhawat and U. Jaiswal (2012). Genetic homogeneity of guava plants derived from somatic embryogenesis using SSR and ISSR markers. Plant Cell Tissue Organ Cult. 111, 259–264.
- Sardana, S.; R. Mahjan; N. Gautam and B. Ram (2007). Genetic variability in pea (*Pisum sativum* L.) germplasm for utilization. SABRAO J Breed Genet 39:31-41.
- Singh, R.K. and B.D. Chaudhury (1985). Biometrical methods in quantitative genetic analysis. Kalyani publishers, New Delhi, India.
- Sweetman S.F.; J.J. Strain and V.J. McKelvey-Martin (1997). Effect of antioxidant vitamin supplementation on DNA damage and repair in human lymphoblastoid cells. Nutr. Cancer 27:122–130.

- Suntornsuk, L; W. Kritsanapun; S. Nilkamhank and A. Paochom (2002). Quantitation of vitamin C content in herbal juice using direct titration. Journal of Pharmaceutical and Biochemical Analysis, 28, 849–855.
- Xiangyan, Y.; C. Yuanbao; C. Haojun; G. Weitang; Z. Quanguang; L. Lianying and H. Xiaojiang (2011). Orthogonal optimization and establishment of SRAP-PCR amplification system of guava (*Psidium guajava* L.). Chin Agri Sci Bull 27(22):219-223.
- Yan, L.Y.; L.T. Teng and T.J. Jhi (2006). Antioxidant properties of guava fruit: comparison with some local fruits. Sunway Academic Journal 3, 9–20.
- Yilmaz, K.U.; S. Ercisli; Y. Zengin; M. Sengul and E.Y. Kafkas (2009). Preliminary characterisation of cornelian cherry (*Cornus mas* L.) genotypes for their physicochemical properties. Food Chemistry, 114, 408–412.
- Youssef, M. (2012). Khirshyat 1.0: a simple microprogram for some molecular biology protocols. Genes, genomes and genomics 6: 102-105.
- Youssef, M.; M.R. El-Helw; A.S. Taghian and H.M. El-Aref (2010). Improvement of *Psidium guajava* L. using micropropagation. Acta Hort 849: 223-230.
- Youssef, M.; R.A. Ibrahim and K.A. Amein (2015a). Comparison of phenotypic and molecular assessment of genetic diversity in guava. Acta Hort 1100: 115-120.
- Youssef, M.; R. Valdez-Ojeda; J.R. Ku-Cauich and R.M. Escobedo-GraciaMedrano (2015b). Enhanced Protocol for Isolation of Plant Genomic DNA. Journal of Agriculture and Environmental Sciences, 4:(2) 172-180. DOI: 10.15640/jaes.v4n2a20.

الواسمات الجزيئية المصاحبة للمحتوى العالي لفيتامين ج في الجوافة محمد أحمد الملقب بالخرشي محمد يوسف و رشاد عبد الوهاب إبراهيم ١ ـ قسم الوراثة – كلية الزراعة – جامعة أسيوط – مصر. ٢ ـ قسم الفاكهة – كلية الزراعة – جامعة أسيوط – مصر.

تم في هذه الدراسة تقدير محتوى فيتامين ج في أربع وسبعين سلالة من الجوافة باستخدام طريقة المعايرة المباشرة في موسمين. أظهرت النتائج أن أعلى قيمة من محتوى فيتامين ج كانت ٢٨٤٠٣.١٣٣. بينما كانت أقل قيمة ١٨٢٤ ١٢٢. ابمتوسط عام ٢٢١.٢٢±٢٢١ مجم/١٠٠ جم وزن طازج. كما أظهر تحليل التباين إختلافات معنوية جداً بين السلالات المختبرة وأيضا التفاعل بين السلالات والموسمين في صفة محتوى فيتامين ج. أظهرت الصفة توزيعاً طبيعياً وقيمة عالية من معامل التوريث بالمعنى الواسع (٩٠.) وأيضا قيمة عالية من درجة التقدم الوراثي (٩٤.٧). على الجانب الآخر، تم استخدام كلاً من الواسم الجزيئي SRAP و الواسم الجزيئي ISSR في التحليل الجزيئي بهدف تحديد حزم خاصة للتراكيب الوراثية المحانب الآخر، تم استخدام كلاً من الواسم الجزيئي SRAP و الواسم الجزيئي ISSR أكثر فعالية من درجة التقدم الوراثي (٩٤.٩). على متخصصة. كان من بين هذه الحزم عدد ١٠ حزم فريدة وخاصة بالمحتوي العالي من فيتامين ج بينما كانت الحزمين الأخرتين خاصين بالمحتوي المنخصصة. كان من بين هذه الحزم عدد ١٠ حزم فريدة وخاصة بالمحتوي العالي من فيتامين ج بينما كانت الحزمتين الأخرتين خاصين بالمحتوي المتخصصة. كان من بين هذه الحزم عدد ١٠ حزم فريدة وخاصة بالمحتوي العالي من فيتامين ج بينما كانت الحزمين الأخرتين خاصين بالمحتوي المنخضص من الفيتامين. في الوقت نفسه أظهر الواسم ISSR مجموع أربعة حزم فقط متخصصة للمحتوي المناخض مان التراتية المنخصص عليها في هذه الدر اسة معلومات جيدة تساعد في انتخاب الطرز الور الثية ذات المحتوي العالي من فيتامين ج ليمكن المحتوي المتحصل عليها في هذه الدر اسة معلومات جيدة تساعد في انتخاب الطرز الور الثية ذات المحتوي العالي من فيتامين ج ليمكن استخدامها في بر امج المتحصل عليها في هذه الدر اسة معلومات جيدة تساعد في انتخاب الطرز الور الثية ذات المحتوي العالي من فيتامين ج ليمكن الموتور بين عمل التربية المتحصل عليها في هذه الدر السة معلومات جدات المحتوي العالي من فيتامين ج ليمكن المحتوي المرتين المتحصل عليها في هذه الدر المر الور الور الور الثية ذات المحتوي العالي من فيتامين ج ليمكن استخدامها في بر امج التوليزية ذات المحتوي العالي من فيتامين ج و الذي يمكن أن يتم في مر حلة البادرة أو الشتلات المطعمة مما يؤيد في ختصار الوقت في نبات التطرز الور الثيذات المحتوي العالي من قيتامين جول المان الخاصة المح